Biologi Tanah

nasih@ugm.ac.id

Soil biology: Important relationship with soil quality

- Organic matter
- Residue decomposition
- Soil structure
- Nutrient cycling
- 1 g of soil has 100,000,000 bacteria

ASM MicrobeLibrary.org©Ghiorse

ASM Microbel Bary.org@Smith

Does Size Matter?

(from T. Decaëns, 2008)

Agence de l'Environnement et de la Maltrise de l'Energie

Moles (50-100 mm) Snails (2-150 mm) Centipedes (1.5-50 mm) Woodlouses (2-20 mm) Insect larvae (0.7-20 mm) Spiders (0.7-20 mm) Earthworms (0.7-10 mm) Enchytraeids (0.2-5 mm) Micro-arthropods (0.1-5 mm) Nematodes (5-100 µm) Protozoa (5-50µm) Algae (5-50µm) Fungi (1-50 µm) Bacteria (0.5-2 µm)

Classification of soil biota in relation to size of pores and particle in soils used in soil biology. (Adapted from Gisi et al. 1997)

Type of Soil Ore	anicm	Major Eurotions	
Type of Soil Organism			
Photosynthesizers	 Plants Algae Sacteria 	Capture energy • Use solar energy to fix CO ₂ . • Add organic matter to soil (biomass such as dead cells, plant litter, and secondary metabolites).	
Decomposers	• Bacteria • Fungi	 Break down residue Immobilize (retain) nutrients in their biomass. Create new organic compounds (cell constituents, waste products) that are sources of energy and nutrients for other organisms. Produce compounds that help bind soil into aggregates. Bind soil aggregates with fungal hyphae. Nitrifying and denitrifying bacteria convert forms of nitrogen. Compete with or inhibit disease-causing organisms. 	
Mutualists	• Bacteria • Fungi	 Enhance plant growth Protect plant roots from disease-causing organisms. Some bacteria fix N₂. Some fungi form mycorrhizal associations with roots and deliver nutrients (such as P) and water to the plant. 	
Pathogens Parasites	Bacteria Fungi Nematodes Microarthropods	 Promote disease Consume roots and other plant parts, causing disease. Parasitize nematodes or insects, including disease-causing organisms. 	
Root-feeders	Nematodes Macroarthropods (e.g., cutworm, weevil larvae, & symphylans)	Consume plant roots Potentially cause significant crop yield losses. 	
Bacterial-feeders	Protozoa Nematodes	Graze • Release plant available nitrogen (NH _a +) and other nutrients when feeding on bacteria. • Control many root-feeding or disease-causing pests. • Stimulate and control the activity of bacterial populations.	
Fungal-feeders	Nematodes Microarthropods	Graze • Release plant available nitrogen (NH _a *) and other nutrients when feeding on fungi. • Control many root-feeding or disease-causing pests. • Stimulate and control the activity of fungal populations.	
Shredders	Earthworms Macroarthropods	Break down residue and enhance soil structure Shred plant litter as they feed on bacteria and fungi. Provide habitat for bacteria in their guts and fecal pellets. Enhance soil structure as they produce fecal pellets and burrow through soil.	
Higher-level predators	Nematode-feeding nematodes Larger arthropods, mice, voles, shrews, birds, other above- ground animals	 Control populations Control the populations of lower trophic-level predators. Larger organisms improve soil structure by burrowing and by passing soil through their guts. Larger organisms carry smaller organisms long distances. 	

Classification of Soil Organisms

Classification	Body Width	Examples
Microflora	$<$ 10 μ m	Bacteria
		Fungi
Microfauna	$<$ 100 μm	Protozoa
		Nematodes
Mesofauna	100 μm to 2 mm	Acari
		Collembola
Macrofauna	$2 \mathrm{mm}$ to $20 \mathrm{mm}$	Earthworms
		Snails

Fauna: Macrofauna (> 2mm):

Vertebrates

Organisms: Moles, mice, shrews Functions: Mix soil with burrowing, hasten decomposition

Arthropods

Beetles: Primary consumer, transport and mixing of organics

Ants: Primary consumer, transport and mixing of organics, movement of B horizon to surface

Centipedes: Predator, minor role in soil formation

Millipedes: Saprophageous (feed on dead organic matter), transport and mixing. Mostly mulls

Springtails: Primary consumer, affect soil structure

Mites: Saprophageous, very important in numbers, affect soil structure

Annelids Earthworms (Lumbricidae spp.)

Fauna: Microfauna (<0.1 mm):

Nematodes

- Nearly microscopic roundworms
- Important as population regulators and nutrient concentrators
- Common in mull and grassland soils; some in forest soils
- Can be parasites

Protozoa

- 1-celled organisms
- Consume decomposing organic matter and bacteria
- Most abundant soil fauna

Flora: Soil Microflora

Four major groups:

- 1. Bacteria
- 2. Actinomycetes
- 3. Fungi
- 4. Algae

Can also classify according to how they obtain energy:

- Autotrophic: Use sunlight of inorganic chemical reactions for energy
- Hetertrophic: Use organic compounds for energy

organisms in Soil

Bacteria

Protozoa

Earthworm

Fungi

Mites

Nematodes

Myriapods

Actinomycetes

Isopods

Organism	Length or	Abundance
	(diameter) mm	(arable systems)
Bacteria	(0.001)	3,000,000,000 / g
Fungi	(0.005-0.020)	50 meters / g
Protozoa	0.010-0.200	100,000 / g
Nematodes	1-4.5	7,000,000 / m ²
Earthworms	20-200	950 / m ²
Potworms	10-50	65,000 / m ²
Isopods	3-18	??
Centipedes	5-80	??
Millipedes	5-50	??
Symphylans	2-15	4,500 / m ²
Pauropods	0.5-1.5	5,000 / m ²
Diplurans	2-7	30 / m ²
Proturans	0.4-2	1,000 / m ²
Springtails	1-7	100,000 / m ²
Mites	0.1-3	250,000 / m ²

"Ordinary" Bacteria,

Community Structure – Food Web

The soil food web - energy flows

Beneficial Microbes in Soil-Plant System

N-Fixation: Frankia

- actinomycetes
- associates with desert shrubs (e.g., *Ceanothus*) and various tree species (e.g., alder)

Frankia Nodules on Alder

Fungi-Plant Interaction

Mycorrhizae

(root fungus) - extension of root system

- fungus enhances nutrient and water intake

- plants provide carbon source

Nearly 90% of native plants have mycorrhizae association

Ectomycorrhyzae

association at exterior of rootdevelop on evergreen trees and shrubs

Mycorrhizae

Endomycorrhizae

- Associations occur in root interior between cells
- Develop on deciduous trees, annual and herbaceous plants

Pools of Soil Organic Matter

Organic Matter Degradation: Nutrient Cycling

Biomass

Nutrient Incorporation

Detritus (Plant Debris)

Soil Humus

Nutrient Release

Soil Organic Matter: Humus

-reactive functional groups:-carboxyl, hydroxyl, phenolic

- High cation (anion) exchange capacity
- High water holding capacity
- Promotes soil aggregation

Organic Nitrogen Availability

1	Phytamin 800 \$60.00	20 gal./acre = 14 lb. N/acre Immediate
	Phytagrow \$130.00	500lb./acre = 60 lb. N/acre 7 to 90 days
ii ₹	Compost \$120,00	3 Tons/acre = 60 lb. N/acre 7 to 365 days
icreasing Nitrogen Availab	<section-header><text><text></text></text></section-header>	25 to 100 lbs. N /acre/year Variable due to Health of Soil Biology
Π	Stable FREE!!	Less than 10 lbs. N/acre/year Nitrogen in Humus form and very, very stable

Increase in Active Fraction increases nutrients!

Soil Sustainability Model

Decomposition

Organic matter constituents:

- Simple sugars: small molecules, energy-rich bonds

40-80%

- (e.g., glucose)
 Starches: simple sugars, but longer chains; storage of carbohydrates
- Hemicellulose: polymers of basic sugars in straight or branched chains
 - Cellulose: polymers with polymers with 3-d structure, structural function; external enzyme required to

decompose
Lignin: polyphenol (ring structure), resistant to decay

Stages of Decomposition

- 1. Fragmentation: Physical breakdown; macroinvertebrates involved.
- 2. Leaching: soluble constituents, esp. K
- Chemical breakdown
 - Enzymatic breakdown of C compounds:
 - Easily degradable: proteins, sugars, starches
 - Cellulose and bug bodies
 - More resistant (lignin)
 - Formation and release of by-products (gases, soluble elements, partially oxidized litter)
 - Humus formation: material resistant microorganisms modification of lignin, synthesis by microorgs

いたという	Material	C/N ratio
	Soil Microbes Bacteria Actinomycetes Fungi	6:1 6:1 12:1
	Litter Types Alfalfa Clover Straw Deciduous litter Coniferous litter Woody litter	13:1 20:1 80:1 40:1 to 80:1 60:1 to 130:1 250:1 to 600:1

Soil Organic Matter

12:1 to 50:1

GERABAH ORGANIK

Rilis Teliti Kotoran Sapi, Syammahfuz Chazali Raih Juara I Bisnis Plan Pemuda Tingkat Nasional

BATA ORGANIK

http://www.gsvc.org/finalists_winners/

on

 $-\frac{1}{2}$

Congratulations to the 2009 Winner: EcoFaeBrick!

EcoFaeBrick, in conjunction with Faerumnesia, produces high quality and low price bricks by utilizing the abundant cow dung in Godean and Sayegan, Jogjakarta. The utilization of the cow dung will not only solve the hydrone problem but also reduce the exploitation of the un-renewable clay. The

The Global Social Venture Competition JC Berkeley. USA. \$45,000